Cookies Policy

The website of the University of Cádiz uses its own and third-party cookies to carry out analysis of use and measurement of traffic, as well as to allow the correct functioning in social networks, and in this way to improve your browsing experience.

If you want to configure cookies, press the button Customize Cookies. You can also access the cookie settings at any time from the corresponding link in the footer.

For more information about cookies you can consult the Cookies policy from the website of the University of Cádiz.

Cookies customization

The website of the University of Cádiz uses its own and third-party cookies to carry out analysis of use and measurement of traffic, as well as to allow the correct functioning in social networks, and in this way to improve your browsing experience.

For more information about cookies you can consult the Cookies policy from the website of the University of Cádiz. You can also access the cookie settings at any time from the corresponding link in the footer.

You can configure the website cookies according to their purpose:

  • Statistical analysis

    Third-party cookies (Google Analytics) are used on this site that allow the number of users to be quantified anonymously (personal data will never be obtained to identify the user) and thus be able to analyze the use made by users of our service, in order to improve the browsing experience and offer our content optimally.

  • Social networks

    Third-party cookies are used on this website that allow the proper functioning of some social networks (mainly YouTube and Twitter) without using any personal data of the user.

UniversidaddeCádiz
Instituto de Investigación Vitivinícola y Agroalimentaria IVAGRO

Biosorption of nickel, cobalt, zinc and copper ions by Serratia marcescens strain 16 in mono and multimetallic systems

Biosorption of nickel, cobalt, zinc and copper ions by Serratia marcescens strain 16 in mono and multimetallic systems

DOI

10.1007/s10532-021-09964-9

KEYWORDS

biosorption; heavy metals; serratia marcescens; waste liquor (WL); multimetallic systems

ABSTRACT

The metallurgical industry is one of the main sources of heavy metal pollution, which represents a severe threat to life. Metals can be removed from aqueous solutions by using microbial biomasses. This paper analyses the heavy metal biosorption capacity of Serratia marcescens strain 16 in single and multimetallic systems. The results obtained show that Co(II), Ni(II) and Zn(II) biosorption in monometallic systems is two to three times higher than in the presence of bi-metallic and multimetallic solutions. Fourier transform infrared spectroscopy confirmed that carbonyl, carboxyl and hydroxyl were the main functional groups, as well as the amide bands I and II involved in metal uptake, which are present in external structures of the bacterial cell. The results obtained demonstrated the viability of S. marcescens strain 16 as a biosorbent for the design of eco-friendly technologies for the treatment of waste liquor.

 

If you would like a copy of this publication, please provide your email address and we will send it to you as soon as possible.