Cookies Policy

The website of the University of Cádiz uses its own and third-party cookies to carry out analysis of use and measurement of traffic, as well as to allow the correct functioning in social networks, and in this way to improve your browsing experience.

If you want to configure cookies, press the button Customize Cookies. You can also access the cookie settings at any time from the corresponding link in the footer.

For more information about cookies you can consult the Cookies policy from the website of the University of Cádiz.

Cookies customization

The website of the University of Cádiz uses its own and third-party cookies to carry out analysis of use and measurement of traffic, as well as to allow the correct functioning in social networks, and in this way to improve your browsing experience.

For more information about cookies you can consult the Cookies policy from the website of the University of Cádiz. You can also access the cookie settings at any time from the corresponding link in the footer.

You can configure the website cookies according to their purpose:

  • Statistical analysis

    Third-party cookies (Google Analytics) are used on this site that allow the number of users to be quantified anonymously (personal data will never be obtained to identify the user) and thus be able to analyze the use made by users of our service, in order to improve the browsing experience and offer our content optimally.

  • Social networks

    Third-party cookies are used on this website that allow the proper functioning of some social networks (mainly YouTube and Twitter) without using any personal data of the user.

UniversidaddeCádiz
Instituto de Investigación Vitivinícola y Agroalimentaria IVAGRO

Site Characterization Index for Continuous Power Quality Monitoring Based on Higher-order Statistics

Site Characterization Index for Continuous Power Quality Monitoring Based on Higher-order Statistics

DOI

10.35833/MPCE.2020.000041

KEYWORDS

Continuous statistical monitoring; big data; data compression; higher-order statistics (HOSs); power quality

ABSTRACT

The high penetration of distributed generation (DG) has set up a challenge for energy management and consequently for the monitoring and assessment of power quality (PQ). Besides, there are new types of disturbances owing to the uncontrolled connections of non-linear loads. The stochastic behaviour triggers the need for new holistic indicators which also deal with big data of PQ in terms of compression and scalability so as to extract the useful information regarding different network states and the prevailing PQ disturbances for future risk assessment and energy management systems. Permanent and continuous monitoring would guarantee the report to claim for damages and to assess the risk of PQ distortions. In this context, we propose a measurement method that postulates the use of two-dimensional (2D) diagrams based on higher-order statistics (HOSs) and a previous voltage quality index that assesses the voltage supply waveform in a continous monitoring campaign. Being suitable for both PQ and reliability applications, the results conclude that the inclusion of HOS measurements in the industrial metrological reports helps characterize the deviations of the voltage supply waveform, extracting the individual customers’ pattern fingerprint, and compressing the data from both time and spatial aspects. The method allows a continuous and robust performance needed in the SG framework. Consequently, the method can be used by an average consumer as a probabilistic method to assess the risk of PQ deviations in site characterization.

 

If you would like a copy of this publication, please provide your email address and we will send it to you as soon as possible.